R/energybalance_functions.R
Qconduction_substrate.RdThe function calculates conductance (W) of an ectothermic animal to its substrate. The method assumes the major resistance to conduction is the substrate and that the interior of the animal is equal in temperature to its surface (thermally well mixed) (Spotila et al. 1992) .
Qconduction_substrate(T_g, T_b, D, K_g = 0.5, A, proportion)numeric surface temperature (K).
numeric body temperature (K).
numeric characteristic dimension of the animal (m).
numeric thermal conductivity of substrate (W K-1 m-1).
numeric surface area (m2).
numeric proportion in contact to the surface.
numeric conductance (W).
Spotila JR, Feder ME, Burggren WW (1992). “Biophysics of Heat and Mass Transfer.” Environmental Physiology of the Amphibians. https://press.uchicago.edu/ucp/books/book/chicago/E/bo3636401.html.
Other biophysical models:
Grashof_number_Gates(),
Grashof_number(),
Nusselt_from_Grashof(),
Nusselt_from_Reynolds(),
Nusselt_number(),
Prandtl_number(),
Qconduction_animal(),
Qconvection(),
Qemitted_thermal_radiation(),
Qevaporation(),
Qmetabolism_from_mass_temp(),
Qmetabolism_from_mass(),
Qnet_Gates(),
Qradiation_absorbed(),
Qthermal_radiation_absorbed(),
Reynolds_number(),
T_sky(),
Tb_CampbellNorman(),
Tb_Gates2(),
Tb_Gates(),
Tb_butterfly(),
Tb_grasshopper(),
Tb_limpetBH(),
Tb_limpet(),
Tb_lizard_Fei(),
Tb_lizard(),
Tb_mussel(),
Tb_salamander_humid(),
Tb_snail(),
Tbed_mussel(),
Tsoil(),
actual_vapor_pressure(),
boundary_layer_resistance(),
external_resistance_to_water_vapor_transfer(),
free_or_forced_convection(),
heat_transfer_coefficient_approximation(),
heat_transfer_coefficient_simple(),
heat_transfer_coefficient(),
saturation_vapor_pressure(),
saturation_water_vapor_pressure()
Qconduction_substrate(T_g = 293,
T_b = 303,
D = 0.01,
K_g = 0.3,
A = 10^-2,
proportion = 0.2)
#> [1] 1.2