R/energybalance_functions.R
Qconduction_substrate.Rd
The function calculates conductance (W) of an ectothermic animal to its substrate. The method assumes the major resistance to conduction is the substrate and that the interior of the animal is equal in temperature to its surface (thermally well mixed) (Spotila et al. 1992) .
Qconduction_substrate(T_g, T_b, D, K_g = 0.5, A, proportion)
numeric
surface temperature (K).
numeric
body temperature (K).
numeric
characteristic dimension of the animal (m).
numeric
thermal conductivity of substrate (W K-1 m-1).
numeric
surface area (m2).
numeric
proportion in contact to the surface.
numeric
conductance (W).
Spotila JR, Feder ME, Burggren WW (1992). “Biophysics of Heat and Mass Transfer.” Environmental Physiology of the Amphibians. https://press.uchicago.edu/ucp/books/book/chicago/E/bo3636401.html.
Other biophysical models:
Grashof_number_Gates()
,
Grashof_number()
,
Nusselt_from_Grashof()
,
Nusselt_from_Reynolds()
,
Nusselt_number()
,
Prandtl_number()
,
Qconduction_animal()
,
Qconvection()
,
Qemitted_thermal_radiation()
,
Qevaporation()
,
Qmetabolism_from_mass_temp()
,
Qmetabolism_from_mass()
,
Qnet_Gates()
,
Qradiation_absorbed()
,
Qthermal_radiation_absorbed()
,
Reynolds_number()
,
T_sky()
,
Tb_CampbellNorman()
,
Tb_Gates2()
,
Tb_Gates()
,
Tb_butterfly()
,
Tb_grasshopper()
,
Tb_limpetBH()
,
Tb_limpet()
,
Tb_lizard_Fei()
,
Tb_lizard()
,
Tb_mussel()
,
Tb_salamander_humid()
,
Tb_snail()
,
Tbed_mussel()
,
Tsoil()
,
actual_vapor_pressure()
,
boundary_layer_resistance()
,
external_resistance_to_water_vapor_transfer()
,
free_or_forced_convection()
,
heat_transfer_coefficient_approximation()
,
heat_transfer_coefficient_simple()
,
heat_transfer_coefficient()
,
saturation_vapor_pressure()
,
saturation_water_vapor_pressure()
Qconduction_substrate(T_g = 293,
T_b = 303,
D = 0.01,
K_g = 0.3,
A = 10^-2,
proportion = 0.2)
#> [1] 1.2