The function estimates body temperature of a mussel (C). The function implements a steady-state model, which assumes unchanging environmental conditions. Based on Helmuth (1999) .

Tbed_mussel(l, T_a, S, k_d, u, evap = FALSE, cl = NA)

Arguments

l

numeric mussel length (anterior/posterior axis) (m).

T_a

numeric air temperature at 4 m above ground (C).

S

numeric direct solar flux density (W m-2).

k_d

numeric diffuse fraction, proportion of solar radiation that is diffuse.

u

numeric wind speed at 4 m above ground (m s-1).

evap

logical Are mussels gaping to evaporatively cool? If TRUE, assumes constant mass loss rate of 5 percent of initial body mass per hour.

cl

numeric fraction of the sky covered by cloud, optional.

Value

numeric predicted body (operative environmental) temperature (C).

Details

Conduction is considered negligible due to a small area of contact.

Thermal radiative flux is calculated following Helmuth (1998) , Helmuth (1999) , and Idso and Jackson (1969) .

References

Helmuth B (1999). “Thermal biology of rocky intertidal mussels: quantifying body temperatures using climatological data.” Ecology, 80(1), 15-34. doi:10.1890/0012-9658(1999)080[0015:TBORIM]2.0.CO;2 .

Helmuth BST (1998). “Intertidal Mussel Microclimates: Predicting the Body Temperature of a Sessile Invertebrate.” Ecological Monographs, 68(1), 51--74. ISSN 00129615, doi:10.2307/2657143 .

Idso SB, Jackson RD (1969). “Thermal radiation from the atmosphere.” Journal of Geophysical Research (1896-1977), 74(23), 5397-5403. doi:10.1029/JC074i023p05397 .

Examples

 Tbed_mussel(l    = 0.1, 
             T_a  = 25, 
             S    = 500, 
             k_d  = 0.2, 
             u    = 1, 
             evap = FALSE)
#> [1] 38.44283