The function estimates body temperature of a mussel (C). The function implements a steady-state model, which assumes unchanging environmental conditions. Based on Helmuth (1999) .

Tbed_mussel(l, T_a, S, k_d, u, evap = FALSE, cl = NA)

## Arguments

l

numeric mussel length (anterior/posterior axis) (m).

T_a

numeric air temperature at 4 m above ground (C).

S

numeric direct solar flux density (W m-2).

k_d

numeric diffuse fraction, proportion of solar radiation that is diffuse.

u

numeric wind speed at 4 m above ground (m s-1).

evap

logical Are mussels gaping to evaporatively cool? If TRUE, assumes constant mass loss rate of 5 percent of initial body mass per hour.

cl

numeric fraction of the sky covered by cloud, optional.

## Value

numeric predicted body (operative environmental) temperature (C).

## Details

Conduction is considered negligible due to a small area of contact.

Thermal radiative flux is calculated following Helmuth (1998) , Helmuth (1999) , and Idso and Jackson (1969) .

Other biophysical models: Grashof_number_Gates(), Grashof_number(), Nusselt_from_Grashof(), Nusselt_from_Reynolds(), Nusselt_number(), Prandtl_number(), Qconduction_animal(), Qconduction_substrate(), Qconvection(), Qemitted_thermal_radiation(), Qevaporation(), Qmetabolism_from_mass_temp(), Qmetabolism_from_mass(), Qnet_Gates(), Qradiation_absorbed(), Qthermal_radiation_absorbed(), Reynolds_number(), Tb_CampbellNorman(), Tb_Gates2(), Tb_Gates(), Tb_butterfly(), Tb_grasshopper(), Tb_limpetBH(), Tb_limpet(), Tb_lizard_Fei(), Tb_lizard(), Tb_mussel(), Tb_salamander_humid(), Tb_snail(), Tsoil(), actual_vapor_pressure(), boundary_layer_resistance(), external_resistance_to_water_vapor_transfer(), free_or_forced_convection(), heat_transfer_coefficient_approximation(), heat_transfer_coefficient_simple(), heat_transfer_coefficient(), saturation_vapor_pressure(), saturation_water_vapor_pressure()

## Examples

 Tbed_mussel(l    = 0.1,
T_a  = 25,
S    = 500,
k_d  = 0.2,
u    = 1,
evap = FALSE)
#>  38.44283